Table des matières

Ι	Le j	phénomène de dispersion	2
	1.	Solution de type OPPM en l'abscence d'équation de D'Alembert	2
	2.	Relation de dispersion	2
	3.	Absorption et dispersion	2
		(a) Retour au champ réel	2
		(b) Dispersion - vitesse de phase - partie réelle de k	2
		(c) Absorption - distance caractéristique d'amortissement - partie imaginaire de k .	2
	4.	Étalement du paquet d'onde - vitesse de groupe	2
II	Am	ortissement de la corde vibrante	2
	1.	Mise en équation	2
	2.	Solutions	2
		(a) Méthode générale (non-exigible)	2
		(b) Cas de faibles frottements	2
II	I Cha	aîne de pendules couplés	2
	1.	Relation de dispersion de type Klein-Gordon (non-établie)	2
	2.	Discussion sur les solutions possibles	2
		(a) Aucune dispersion ni absorption	2
		(b) Dispersion sans absorption	2
		(c) Onde évanescente	2

I. Le phénomène de dispersion

- Solution de type OPPM en l'abscence d'équation de D'Alembert
- 2. Relation de dispersion
- 3. Absorption et dispersion
 - (a) Retour au champ réel
 - (b) Dispersion vitesse de phase partie réelle de k
 - (c) Absorption distance caractéristique d'amortissement partie imaginaire de \boldsymbol{k}
- 4. Étalement du paquet d'onde vitesse de groupe

II. Amortissement de la corde vibrante

- 1. Mise en équation
- 2. Solutions
 - (a) Méthode générale (non-exigible)
 - (b) Cas de faibles frottements

III. Chaîne de pendules couplés

- 1. Relation de dispersion de type Klein-Gordon (non-établie)
- 2. Discussion sur les solutions possibles
 - (a) Aucune dispersion ni absorption
 - (b) Dispersion sans absorption
 - (c) Onde évanescente