ÉQUATION DIFFÉRENTIELLES LINÉRAIRES

1 Équations différentielles du 1^{er} ordre à coefficients constants

Équation générale ay'(t) + by(t) = c

Équation homogène ay'(t) + by(t) = 0

Solution de l'équation homogène $y(t) = \lambda \exp \big(-\frac{b}{a} t \big)$

Solution particulière de l'équation générale $y(t) = \frac{c}{b}$

Solution de l'équation générale $y(t) = \lambda \exp \left(-\frac{b}{a} t \right) + \frac{c}{b}$

Nombre de conditions initiales (c. i.) nécessaires et suffisantes

Méthode (valable aussi pour les équations différentielles à coefficients non constants) :

On a
$$a(t)\frac{dy(t)}{dt} + b(t)y(t) = 0$$

donc $\frac{dy}{y} = -\frac{b(t)}{a(t)} dt$
soit $y(t) = \lambda \exp \varphi(t)$ avec $\varphi(t) = \int \frac{-b(t)}{a(t)} dt$

2 Équations différentielles du 2nd ordre à coefficients constants

Équation générale ay''(t) + by'(t) + cy(t) = d

Équation homogène ay''(t) + by'(t) + cy(t) = 0

Solution de l'équation homogène dépend du signe du discriminant

Solution particulière de l'équation générale $y(t) = \frac{d}{c}$

Solution de l'équation générale $y(t) = \text{solution de l'équation homogène} + \frac{d}{c}$

Nombre de c. i. nécessaires et suffisantes

Résolution de l'équation homogène par le polynôme caractéristique :

$$ar^2 + br + c = 0$$

On calcule le discriminant, $\Delta = b^2 - 4ac$. Puis on calcule les solutions r du pôlynome caractéristique.

 $\Delta > 0$ 2 solutions réelles r_1 et r_2 $y(t) = \lambda_1 e^{r_1 t} + \lambda_2 e^{r_2 t}$ $\Delta = 0$ 1 solution double réelle r_0 $y(t) = (At + B)e^{r_0 t}$

 $\Delta < 0$ 2 solutions complexes conjuguées $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ $y(t) = (\lambda_1 \cos \beta t + \lambda_2 \sin \beta t)e^{\alpha t}$

<u>Important!</u> Pour les deux types d'équa. diff., on ne calcule les constantes d'intégration grâce aux c. i. qu'après avoir ajouté la solution particulière à la solution de l'équation homogène.